On the bilinearity rank of a proper cone and Lyapunov-like transformations

نویسندگان

  • M. Seetharama Gowda
  • Jiyuan Tao
چکیده

A real square matrix Q is a bilinear complementarity relation on a proper cone K in R if x ∈ K, s ∈ K∗, and 〈x, s〉 = 0⇒ xQs = 0, where K∗ is the dual of K [14]. The bilinearity rank of K is the dimension of the space of all bilinear complementarity relations on K. In this article, we continue the study initiated in [14] by Rudol et al. We show that bilinear complementarity relations are related to Lyapunov-like transformations that appear in dynamical systems and in complementarity theory and further show that the bilinearity rank of K is the dimension of the Lie algebra of the automorphism group of K. In addition, we correct a result of [14], compute the bilinearity ranks of symmetric and completely positive cones, and state Schur-type results for Lyapunov-like transformations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bilinearity Rank of the Cone of Positive Polynomials and Related Cones

For a proper cone K ⊂ Rn and its dual cone K∗ the complementary slackness condition xT s = 0 defines an n-dimensional manifold C(K) in the space { (x, s) | x ∈ K, s ∈ K∗ }. When K is a symmetric cone, this fact translates to a set of n linearly independent bilinear identities (optimality conditions) satisfied by every (x, s) ∈ C(K). This proves to be very useful when optimizing over such cones,...

متن کامل

Lyapunov rank of polyhedral positive operators

IfK is a closed convex cone and if L is a linear operator having L (K) ⊆ K, then L is a positive operator on K and L preserves inequality with respect to K. The set of all positive operators on K is denoted by π (K). If K∗ is the dual of K, then its complementarity set is C (K) := {(x, s) ∈ K ×K | 〈x, s〉 = 0} . Such a set arises as optimality conditions in convex optimization, and a linear oper...

متن کامل

Z-transformations on proper and symmetric cones Z-transformations

Motivated by the similarities between the properties of Z-matrices on Rn + and Lyapunov and Stein transformations on the semidefinite cone S+, we introduce and study Z-transformations on proper cones. We show that many properties of Z-matrices extend to Z-transformations. We describe the diagonal stability of such a transformation on a symmetric cone by means of quadratic representations. Final...

متن کامل

Some complementarity properties of Z and Lyapunov-like transformations on symmetric cones

This article deals with some complementarity properties of Z and Lyapunov-like transformations on a symmetric cone. Similar to the results proved for Lyapunov and Stein transformations on Herm(Rn×n), we show that for Lyapunov-like transformations, the P and S properties are equivalent, and that for a Ztransformation, the S-property implies the P-property of a transformation that is (quadratical...

متن کامل

How to project onto extended second order cones

The extended second order cones were introduced by S. Z. Németh and G. Zhang in [S. Z. Németh and G. Zhang. Extended Lorentz cones and variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768, 2016] for solving mixed complementarity problems and variational inequalities on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended second order cones. Journal of G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 147  شماره 

صفحات  -

تاریخ انتشار 2014